Kinetic Energy SPH4C

When a force is applied to accelerate an object from speed v_1 to speed v_2 , the work done on
the object can be written as: $W = $ =
Since $a = \frac{v_2 - v_1}{\Delta t}$ and $\Delta d = v_{av} \Delta t = \frac{1}{2} (v_2 + v_1) \Delta t$,
W =
Since this work is done to of the object, the energy that is increased is the object's kinetic energy E_k :
Kinetic energy is therefore $E_k = \underline{}$
Example 1 A car of mass 1500 kg is travelling at a speed of 24 m/s. Calculate the kinetic energy of the car.
Example 2 An object of mass 5.0 kg is travelling at a speed of 4.0 m/s. 27 J of work is done to increase the speed of the object. Calculate its final kinetic energy and final speed.

More Practice

		n below with the de may be used more	•	its kinetic ene	rgy.			
	A. $E_k = 0$	B. E_k is increasing	ng C. <i>E_k</i> i	s decreasing	D. E _k is co	nstant		
	A ball is at rest.							
	A person is exerting a force on the ball to launch it upward.							
	The ball is freely moving upward through the air.							
	The ball is freely falling downward through the air.							
	The ball is rolling along the ground at constant speed.							
1.	What is the kinetic energy of a 1.0 kg object moving at 4.0 m/s?							
	A. 4.0 J	B. 8.0 J C.	16 J	D. It cannot b	e determine	ed.		
2.	An object is sliding across a frictionless surface at a constant speed. The kinetic energy of the object is:							
	A. increasing at an increasing rate C. increasing at a decreasing rate			B. increasing linearly D. constant				
3.	Which requires more work: increasing the speed of an object from 0 m/s to 5 m/s or from 5 m/s to 10 m/s?							
	A. from 0 m/s to 5 m/s			B. from 5 m/s to 10 m/s				

4. A 2.0 kg ball is moving at 3.0 m/s while at a height of 1.5 m above the ground. Calculate the total mechanical energy (gravitational potential energy + kinetic energy) of the ball.

C. both require the same amount of work D. It cannot be determined.